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Abstract

A criterion is derived for delamination onset in transversely isotropic laminated plates under small mass, high veloc-
ity impact. The resulting delamination threshold load is about 21% higher than the corresponding quasi-static threshold
load. A closed form approximation for the peak impact load is then used to predict the delamination threshold velocity.
The theory is validated for a range of test cases by comparison with 3D finite element simulation using LS-DYNA and a
newly developed interface element to model delamination onset and growth. The predicted delamination threshold
loads and velocities are in very good agreement with the finite element simulations. Good agreement is also shown
in a comparison with published experimental results. In contrast to quasi-static impacts, delamination growth occurs
under a rapidly decreasing load. Inclusion of finite thickness effects and a proper description of the contact stiffness
are found to be vital for accurate prediction of the delamination threshold velocity.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Impact damage is a major issue in the design of laminated composite structures, as it may reduce strength
and stiffness significantly without any visible damage at the surface (Abrate, 1991; Davies and Olsson, 2004).
The sequence of damage formation in laminated fibre composites normally involves initial matrix cracks,
followed by delaminations and eventually fibre fracture. Delaminations are particularly serious since they
are formed at relatively low loads and have a major influence on flexural stiffness and buckling failure.

In the aircraft industry it is customary to quantify impact threats in terms of impact energy. However, it
has been demonstrated experimentally that small mass and large mass impactors of equal impact energy
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cause entirely different response and damage when impacting a plate (Olsson, 2000). It is common to clas-
sify impact as ‘‘high velocity’’ and ‘‘low velocity’’, but there is considerable disagreement on the definition
of these categories. Some authors refer, improperly, to the response type under small mass impact as ‘‘high
velocity’’ impact and under large mass impact as ‘‘low velocity’’ impact, but it has been shown that the re-
sponse type under elastic conditions, i.e., prior to damage onset, only depends on the impactor/plate mass
ratio (Olsson, 2000). The distinction between ‘‘high velocity’’ and ‘‘low velocity’’ impact may, however, be
relevant when considering damage initiation, as high impact velocities are required to cause damage during
a small mass impact.

Different response types are illustrated in Fig. 1. For very light impactors the impacted plate will not
have time to deflect and the response will be dominated by through-thickness waves (Fig. 1a). Most small
mass impactors, e.g., runway debris and hail, result in intermediate impact times where the response in-
volves transient shear waves and flexural waves (Fig. 1b). Large mass impactors like dropped tools cause
a quasi-static response, where the deflection shape and amplitude is equivalent to a static loading case (Fig.
1c). For sufficiently high velocities (usually more than 70 m/s for carbon/epoxy laminates) the impactor/
plate mass ratio is irrelevant for the response type, as penetration occurs prior to any deflection.

The impact on plates involves an interaction between plate deflection and indentation. Elastic indenta-
tion of monolithic plates by hemispherical objects is commonly described by a Hertzian contact law, which
assumes an infinite thickness and negligible surface curvature. The general problem of a hemispherical body
impacting an orthotropic half-space was treated by Willis (1966), while more explicit expressions for a
transversely isotropic half-space have been given, e.g., by Greszczuk (1982). Finite thickness increases
the contact stiffness by reducing the surface displacement resulting from integration of strains. These effects
were included in an approximate contact model by Suemasu et al. (1994). Large plate curvature (‘‘wrap-
ping’’) increases the contact stiffness by redistributing the contact stresses to a less concentrated load, which
reduces the resulting indentation (e.g., Wu and Yen, 1994).

Small mass, wave controlled, impact response may be considered as a forced motion of an infinite plate.
The forced motion of an infinite Kirchhoff plate was first treated by Boussinesq (1885) and was later con-
sidered in greater detail by Sneddon (1945). A solution for Hertzian impact on isotropic infinite Kirchhoff
plates was presented by Zener (1941). Solutions for impact on orthotropic Kirchhoff plates were developed
independently by Frischbier (1987) and Olsson (1989, 1992). A solution for impact on shear deformable
quasi-isotropic plates was presented by Mittal (1987). This approach was later generalised by Olsson
(2002) to orthotropic plates having either a Hertzian or a linear contact law, where the latter contact
law is typical for sandwich panels. This paper also included explicit expressions for the numerical solution
of the associated integral equations. A recent paper by Olsson (2003) used asymptotic cases to derive closed
form approximations for the peak load during small mass impact on shear deformable plates.

The onset of delamination growth during impact on plates is obviously of great practical interest. A
delamination growth criterion for static conditions was derived by Davies and Robinson (1992), who
Fig. 1. Different response types during impact on plates.
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showed that delamination growth occurs under a constant load independently of the delamination size. A
different and more laborious approach was used by Suemasu and Majima (1996) who provided a more
thorough derivation for an arbitrary number of delaminations. The effect of large deflections was consid-
ered in a later paper by Suemasu and Majima (1998). The small deflection perturbation approach used by
Davies and Robinson (1992) implies that the delamination threshold load is independent of the boundary
conditions of the plate, which has been demonstrated numerically by Olsson (2001). The delamination
threshold load is supported by several experimental studies of quasi-static large mass impact for various
laminates and boundary conditions (Davies and Robinson, 1992; Olsson, 2001; Cartié and Irving, 2002).
A comparison with published experimental data indicated that the static delamination threshold load
may also be relevant under truly dynamic conditions, i.e., during small mass impact (Olsson, 2003).

The present paper derives the delamination threshold load for small mass/high velocity impact on trans-
versely isotropic plates, which often is a suitable homogenised approximation of laminates having many
orthotropic plies equally and regularly distributed in at least three directions. It is shown that the inclusion
of dynamic terms in the fracture mechanics criterion yields a delamination threshold load, which is some-
what larger than in the static case. The theoretical predictions are validated by comparison with explicit
dynamic finite element simulations allowing initiation and growth of delaminations for a range of represen-
tative cases. Furthermore, a closed form approximation for the peak impact load is used to predict the cor-
responding threshold impact velocity. The predicted threshold velocities are compared with the FE
simulations and published experimental results.
2. Closed form solutions

Consider a hemispherical impactor indenting a homogenous transversely isotropic elastic plate of thick-
ness h at a contact load F. A first order approximation for the approach a between the impactor and the
plate under small curvature was derived by Suemasu et al. (1994):
a ¼ ðF =kHÞ2=3�1� ln 2F 1=3k2=3
H K0=h

�
where a � wi � wp

or

a ¼ ðF =k�HÞ
2=3 where k�H ¼ kH

�
1� ln 2F 1=3k2=3

H K0=h
�3=2

.
. ð1Þ
Here wi and wp are the displacements of the impactor mass centre and the unloaded plate surface. The sec-
ond form of Eq. (1), suggested here, recovers the Hertzian load-indentation relation assumed in the impact
model described later and will be used in the following analysis.

For brevity, the complicated expression for the material constant K0 is not repeated here. The contact
stiffness kH is given by the impactor tup radius R and the effective contact modulus QH:
kH ¼ 4
3
QH

ffiffiffi
R
p

where 1=QH ¼ 1=Qi þ 1=Qp ð2Þ
and Qi and Qp are the effective contact moduli of the impactor and plate. Using earlier works Greszczuk
(1982) derived the following expression for the contact modulus Q of a material with transverse isotropy
along the loading axis z:
Q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Grz=Crr

p
ðCrrCzz � C2

rzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CrrCzz

p
þ GzrÞ2 � ðCrz þ GzrÞ2

q�
;

where Crr ¼ Erð1� mrzmzrÞX=ð1þ mrÞ; Czz ¼ Ezð1� mrÞX;
Crz ¼ ErmzrX; X ¼ 1=ð1� mr � 2mrzmzrÞ. ð3Þ
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The index r refers to the radial direction and the through-thickness Poisson�s ratios are defined by mrz = ez/er

and mzr = er/ez under uniaxial loading in the r- and z-direction, respectively.
Isotropic materials are special cases where the solution simplifies to
Q ¼ E=ð1� m2Þ. ð4Þ
It should be noted that the tentative approximation Q � Ez/(1 � mzrmrz) suggested by Olsson (1992)
underestimates the contact modulus of typical composite plates by 10–20%.

The contact stress distribution within the contact radius c is given by
p ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=c2

p
where p0 ¼ 3

2
F = pc2
� �

and c ¼
ffiffiffiffiffiffi
Ra
p

. ð5Þ
Within plate theory the peak shear stress is given by (3/2)sav, where the average shear stress sav is ob-
tained by integrating Eq. (5) to obtain the surface load, and dividing by 2phr. The maximum shear stress
smax is found by differentiating the resulting expression with respect to the radius r:
smax ¼ 3
2
F =ð2phr1Þ where r1 ¼ ð3=4Þ1=4c. ð6Þ
Combining Eqs. (1), (5) and (6) provides the corresponding threshold load Fs for transverse matrix shear
cracking. When finite thickness effects are neglected this load is given by
F s ¼ ð4p=3Þ3=2ðsU hÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
R=QH

p
; ð7Þ
where sU is the out-of-plane shear strength of the plate.
The matrix shear cracks initiated at the shear threshold load, Fs, gradually coalesce to form delamina-

tions. A criterion for growth of these delaminations must be based on fracture mechanics. Within linear
fracture mechanics the strain energy release rate G during dynamic fracture is given by (Hellan, 1985)
G ¼ dðW � U � T Þ=dA; ð8Þ

where W is the work done by external forces,U is the strain energy, T is the kinetic energy associated with
creation of the fracture area A. For a displacement w due to a single concentrated load, F, we obtain
W = 2U = Fw and the expression simplifies to
G ¼ d 1
2
Fw� T
� �

=dA. ð9Þ
The description of the perturbation approach used by Davies and Robinson (1992) was very brief and
limited to a single delamination. Furthermore, the applicability to general boundary conditions was not
obvious. For these reasons the derivation of the static delamination threshold load will here be repeated
for an arbitrary number of delaminations. For n delaminations the laminate will be divided into n + 1
sublaminates, with a total plate bending stiffness Dn given by
Dn ¼ ðnþ 1ÞD=ðnþ 1Þ3 ¼ D=ðnþ 1Þ2;
where D ¼ Qbh3=12 and Qb ¼ Er=ð1� m2

r Þ. ð10Þ
Here mr is the in-plane Poisson�s ratio of the plate.
The shear stiffness Sn for the laminate with n delaminations is given by
Sn ¼ ðnþ 1ÞS=ðnþ 1Þ ¼ S; where S ¼ KGrzh; ð11Þ

and K is the shear factor of the laminate, which for homogeneous plates is K � 5/6. Thus, shearing does not
contribute to an increased deflection after delamination.

Consider the problem of a quasi-isotropic plate with arbitrary boundary conditions and a concentrated
load acting in the centre of n circular delaminations of radius a (Fig. 2). The clamping of the delaminated
region to the surrounding undelaminated region prevents sliding of the sublaminates. This implies that the
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edge of the delaminated region remains plane and that the response to an applied edge moment is identical
to that of an undelaminated plate, as long as no buckling occurs.

Within small deflection theory the additional deflection w caused by n delaminations is obtained by con-
sidering the deflections due to a central load on a circular plate with zero edge slope (i.e., clamped) after and
before delamination, wn and w0, respectively. Thus
1

2
Fw ¼ 1

2
F ðwn � w0Þ ¼

1

2
F

Fa2

16pDn
� Fa2

16pD0

� �
¼ F 2a2

32pD
ðnþ 1Þ2 � 1
h i

¼ F 2a2

32pD
nðnþ 2Þ. ð12Þ
The delamination area of n delaminations with radius a is given by
dA ¼ 2npa da. ð13Þ

For static conditions (T = 0) combining Eqs. (9), (12) and (13) yields,
Gstat ¼
ðnþ 2ÞF 2

32p2D
. ð14Þ
The equal deflection of all sublaminates implies a pure mode II loading. Thus the threshold load Fdn for
growth of n delaminations under static conditions is given by
F stat
dn ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32GIIcD=ðnþ 2Þ

p
; F stat

d1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32GIIcD=3

p
; ð15Þ
where GIIc is the critical strain energy release rate in mode II. In practice, delaminations form sequentially,
with the first one appearing at the mid-plane where the shear stresses and resulting matrix cracks reach a
maximum. Thus, the threshold load for initiation of delamination growth is given by Fd1. Note that the
delamination threshold load is independent of the delamination radius and therefore remains constant
under static axisymmetric delamination growth with small deflections. This contrasts to the condition
for delamination growth in centrally loaded beams, which is highly dependent on the delamination length
(Davies and Robinson, 1992).

When neglecting transverse shear deformations, which are not affected by delamination, the deflection
velocity immediately below a point load on a large plate (small mass impact) with n delaminations and mass
per unit area m is given by (e.g., Mittal, 1987)
_wn ¼ 1
8
F =

ffiffiffiffiffiffiffiffiffi
mDn

p
¼ 1

8
ðnþ 1ÞF =

ffiffiffiffiffiffiffi
mD
p

. ð16Þ
The kinetic energy of a circular area with n delaminations is given by
T n ¼
1

2

Z a

0

_w2m2pr dr ¼ pma2 _w2
n

Z 1

0

�w2sds ¼ p
64

F 2a2ðnþ 1Þ2=D
h i 7

108
;

where s ¼ r=a and �w ¼ ð1� s2 þ 2s2 ln sÞ. ð17Þ
r

z
Ø 2a

F
w0

n delaminations

wd

Fig. 2. Effect of delamination in large plate.
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Here �w is the normalised local deflection in a circular clamped plate under a central load. The value of the
integral (7/108) was evaluated by somewhat lengthy but straightforward algebraic calculations. The kinetic
energy T associated with forming n circular delaminations of radius a is obtained from the difference of the
kinetic energy for the delaminated area after and before delamination, Tn and T0, respectively:
T ¼ T n � T 0 ¼
F 2a2

32pD
nðnþ 2Þ 7p2

216
. ð18Þ
For dynamic conditions (T 5 0) combining Eqs. (9), (12), (13) and (18) yields
Gdyn ¼ Gstatð1� 7p2=216Þ; ð19Þ

where Gstat is given by Eq. (14).

The resulting delamination threshold load for small mass impact is given by
F dyn
dn ¼ F stat

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7p2=216

p.
� 1.213F stat

dn ; ð20Þ
where the static delamination threshold load F stat
dn is given by Eq. (15).

Interestingly, small mass impact conditions are predicted to cause a moderate increase in the threshold
load for delamination growth, which is independent of the number and size of delaminations.

The ratio between the load for initiation of shear cracking and delamination is given by combining Eqs.
(7), (15) and (20), which after simplification yields
F s=F dyn
d1 ¼ 16

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 7p2=216Þ2p=3

p
s3=2

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QHQbGIIc=R

p.
; ð21Þ
where Qb was defined in Eq. (10). It is found that most small mass impactors are predicted to cause shear
cracking prior to delamination. For the application cases studied later in this article the load for initiation
of shear failure is 36% of the delamination threshold load.

The criticality of an impact is easily assessed by comparing the predicted peak load under elastic condi-
tions with the delamination threshold load F dyn

dn . The peak impact load may either be predicted using a step-
wise numerical solution of the appropriate integral equation (Olsson, 2002) or by using a closed form
approximation based on asymptotic solutions (Olsson, 2003). The latter approach yields the following
approximation for the peak impact load Fpeak for a plate with Hertzian contact behaviour impacted by
a mass M with a hemispherical tup:
1=F peak � 1=F b þ 1=F s þ 1=F c

where F b ¼ 8V 0

ffiffiffiffiffiffiffi
mD
p

; F s ¼ 2V 0

ffiffiffiffiffiffiffiffiffiffi
pMS
p

; F c ¼ k�2=5
H

5
4
MV 2

0

� �3=5
; ð22Þ
where k�H from Eq. (1) is evaluated at the peak load.

The threshold velocity for delamination growth Vd1 is obtained by equating the peak load Fpeak with the
delamination threshold load F dyn

d1 and solving for V0, which requires a brief iterative procedure.
The impact response history may be determined from a dimensionless integral equation, involving a nor-

malised indentation and two dimensionless constants k and b (Olsson, 2003):
k ¼ M= 8T c

ffiffiffiffiffiffiffi
mD
p� 	

¼ ð4=5Þ3=5F c=F b;

b ¼
ffiffiffiffiffiffiffi
mD
p

=ðST cÞ ¼
p
2

kF 2
b=F 2

s ¼
p
2
ð4=5Þ3=5F cF b=F 2

s ;
ð23Þ
where Tc is a time constant used for normalisation.
It is noted that k is a measure of the relative flexural mobility of the plate, while b is a measure of the

relative shear mobility. The elastic impact on a half-space is represented by k = b = 0, which provides a
symmetric impact load history with an impulse 2MV0 exerted to the plate. For increasing values of k
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the impact load history becomes increasingly asymmetric with a response dominated by plate flexure. For
k > 2 the impulse quickly approaches MV0, which corresponds to an apparently inelastic impact. From Eq.
(16) it may be concluded that the maximum deflection wmax

n of a Kirchhoff plate with n delaminations after
completed impact at time timp is bound by
8
ffiffiffiffiffiffiffi
mD
p

wmax
n =ðnþ 1Þ ¼

Z timp

0

F ðsÞds � Imax where MV 0 6 Imax 6 2MV 0. ð24Þ
The properties of orthotropic plates may be represented by the following effective values (Olsson, 2003):
D� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22ðgþ 1Þ=2

p
where g ¼ ðD12 þ 2D66Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
;

S� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�44A�55

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K44A44K55A55

p
;

m�zrm
�
rz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mzxmxzmzymyz
p ¼ mxzmyzEz=

ffiffiffiffiffiffiffiffiffiffi
ExEy

p
; ð25Þ
where Kij are the shear factors and Dij and Aij are the bending and shear stiffness components given by lam-
inated plate theory (Whitney, 1987). For Kirchhoff plates (S* =1) use of D* has been shown to yield a
close approximation of the exact solution for the response (Olsson, 2003). Comparison with experimental
data has also demonstrated the usefulness of this approximation for the quasi-static delamination threshold
load in orthotropic plates (Olsson, 2001) and for estimating the delamination threshold load during dy-
namic small mass impact on laminates (Olsson, 2003). The errors associated with the approximation of
the effective shear stiffness S* should be moderate, as A44 and A55 usually are much more similar than
D11 and D22. The approximation of m�zrm

�
rz should also have a small influence on the solution since this quan-

tity is much less than unity.
3. Finite element validation

3.1. Finite element model

The finite element simulations were carried out using LS-DYNA (2003) explicit finite element code. The
code formulation is based on the updated Lagrangian formulation which is used in conjunction with the
central difference time integration scheme for integrating the resultant set of nonlinear dynamic equations.
The method assumes a linear interpolation for velocities between two subsequent time steps and no stiffness
matrix inversions are required during the analysis. The drawback of the explicit method used in LS-DYNA
(2003) is that it is conditionally stable for nonlinear dynamic problems and the stability for its explicit oper-
ator is based on a critical value of the smallest time increment for a dilatational wave to cross any element
in the mesh. Such a restriction can result in very small time step increments (in the order of nanoseconds for
layered composites), depending on the degree of mesh refinement required in the analysis.

Finite element models of rectangular orthotropic plates were developed with thicknesses ranging from 2
to 6 mm. The dimensions of these plates were 102 mm by 152 mm, which is a common size of impact test
specimens. The edges were assumed clamped and the hemispherical and rigid impactor had a mass of 3 g
and a tup radius of 6 mm to simulate small mass/high velocity impact scenarios. Both impactor and plate
were modelled using single-point integration solid elements available in LS-DYNA (2003). A sliding-line
surface-to-surface contact logic, based on the penalty method formulation, was used to model the contact
between the impactor and the plate. The material properties of the orthotropic plate are listed in Table 1.
Central to the fidelity of the numerical model is the accurate representation of the initiation and possible
propagation of delamination within the plate. Decohesion, or interface, elements were used for this purpose
and these are described in more detail in Section 3.2.



Table 1
Material properties of the plate

Ex = Ey = Er [GPa] Ez [GPa] Gxz = Gyz = Grz [GPa] mxy = mr and myz = mxz = mrz q [kg/m3]

56.0 10.0 0.9, 4.5, 22.5 0.25 1600
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The finite element mesh was generated using the mesh generator LS-INGRID by Stillman and Hallquist
(1985). Interface elements were used to model the resin rich interface zone at the mid-plane of the plate, as
shown in Fig. 3b. Using symmetry, only one-quarter of the plate was modelled and a typical FE mesh is
shown in Fig. 3a. A finer mesh was assigned to the plate impact region in order to capture more accurately
both initiation and delamination propagation during the impact simulations. A mesh sensitivity study was
carried out for the 4 mm thick plate, using three different mesh densities for the plate impact region named
coarse, medium and fine mesh. The meshes consisted of four by one, sixteen by two and thirty six by three
elements per mm3, respectively. Variations in the results for peak load and peak displacement values be-
tween coarse and medium meshes were less than 0.015% and around 0.01% between medium and fine
meshes. In fact, this is not surprising since the interface element formulation is inherently meshing indepen-
dent. Even though variations in results between coarse and fine meshes were negligible the fine mesh was
used throughout the analysis to better represent the bending and through-thickness shear stress distribu-
tions. A viscous LS-DYNA hourglass control algorithm was used to avoid the formation of anomalous
hourglass modes arising from reduced integration. The hourglass coefficient values were carefully chosen
in order to minimise the energy dissipated by hourglass internal forces and its effects on the stable global
deformation modes. As mentioned earlier, small mass impact responses are wave-dominated localised phe-
nomena and therefore a relatively coarse mesh was used for regions far away from the impact region. In
order to confirm such behaviour, the dimensions of the plate were doubled compared to the previous case
and the plate was assumed to be unsupported. Both impact simulations presented identical responses and
were unaffected by the boundary conditions over the time period in which damage initiation was observed.

3.2. Interface elements

Interface elements are decohesion elements, usually of zero thickness or of a finite thickness representing
a resin-rich layer, which are inserted between composite layers or at well-defined interfaces where
Fig. 3. Finite element model used for simulations: (a) Top view of the FE model and (b) interface layer at the mid-plane of the plate.
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delamination is a possible failure mode. They provide a consistent means of simulating both stress-based
initiation and energy-based propagation of delamination. They are also capable of representing mixed-
mode delamination modelling without a priori knowledge of the mode ratio and are relatively mesh inde-
pendent. The interface element formulation used in this study has a finite thickness of tint = 0.01 mm and is
based on the work proposed by Camanho and Davila (2002). It has been implemented into the LS-DYNA
(2003) explicit finite element code as a material subroutine to be used with solid elements and has been
experimentally validated by Pinho et al. (accepted for publication).

The interfacial constitutive law is defined in terms of a polynomial traction/relative displacements curve
given by
ri ¼ ð27r0
i =4Þ½1� 2ðdi=dfiÞ þ ðdi=dfiÞ

2�ðdi=dfiÞ; ð26Þ

and shown in Fig. 4. r0

i corresponds to the stress threshold at which damage initiates and dfi is the critical
displacement at which full decohesion occurs. The index i refers to either mode I, mode II or mode III. A
linear elastic behaviour is assumed for mode I in compression to avoid interpenetration of the element. The
failure displacement for each individual delamination mode is obtained from the integral of Eq. (26) which
is equal to the fracture energy and is given by
Gic ¼
Z dfi

0

ri ddi ¼ ð27=48Þr0
i dfi . ð27Þ
For mixed-mode loading conditions the same constitutive law as given by Eq. (26) is assumed to hold for
all modes and the stress threshold for each delamination mode is obtained from a quadratic stress-based
criterion given by
Fig. 4. Mixed-mode constitutive law for the interface element.
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Table 2
Assumed strengths and interlaminar toughness properties

rn [MPa] sU [MPa] GIc [J/m2] GIIc [J/m2] c

30.0 100 281 600 1.0
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r0
Im
¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=rnÞ2 þ ðn=sU Þ2

q
; ð28Þ

r0
sm
¼ nr0

Im
; ð29Þ
where the subscripts s and I refer to the resultant shear stress and normal tensile stress, respectively; m refers
to mixed-mode loading conditions and rn and sU are the normal and transverse interlaminar shear
strengths, respectively.

The interface constitutive law for mixed-mode loading conditions is illustrated in Fig. 5. n is defined as
the mode ratio parameter, which is the ratio between normal mode I and the resultant mode II/III shear
displacements. The determination of the failure displacements is based on a power law propagation crite-
rion, considering the stresses defined in Eqs. (28) and (29) and the critical strain energy release rates in
modes I and II, GIc and GIIc, respectively:
dfIm
¼ ð48=27Þ ðr0

Im
=GIcÞc þ ðr0

sm
=GIIcÞc


 ��1=c
; ð30Þ

dfsm
¼ ndfIm

. ð31Þ
The interface parameters used in this study are given in Table 2.
4. Parametric study

The accuracy of the theory was studied by comparison with finite element simulations for a range of rep-
resentative cases. The impactor was assumed to be rigid with 6 mm tup radius and a mass of 3 g, which is
representative of a small piece of runway debris. The assumption of a rigid impactor was done to simplify
the finite element modelling, but this assumption is by no means required in any of the models or equations
described in this paper.



Table 3
Overview of cases studied

Thickness, h [mm] 2 3 4 5 6 4 4
Shear modulus, Grz [GPa] 4.5 4.5 4.5 4.5 4.5 0.9 22.5
Flexural mobility, k 2.89 1.31 0.76 0.50 0.36 0.61 0.88
Shear mobility, b 0.13 0.20 0.27 0.35 0.44 1.10 0.06
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The material properties of the plate were selected to be representative of a homogenised quasi-isotropic
laminate of a typical carbon/epoxy composite. Table 1 listed the assumed density and elastic properties.
Table 2 listed the out-of-plane tensile strength rn and shear strength sU and the critical strain energy release
rates in mode I, GIc, and mode II, GIIc. A linear interaction (c = 1) was assumed for the delamination prop-
agation criterion, Eq. (30).

The influence of increasing relative bending stiffness was studied for plate thicknesses between 2 and
6 mm, which are common in the outer parts of an aircraft wing. Most of the simulations assumed a
through-thickness shear modulus of 4.5 GPa, which is typical for a carbon/epoxy laminate. However, to
study the influence of changes in the shear stiffness, the response of the 4 mm plate was also examined
for an isotropic Er/Grz ratio (Grz = 22.5 GPa) and for a plate with very low shear modulus (Grz = 0.9 GPa).
An overview of the different cases is given in Table 3, which shows that the test matrix ranges from cases
dominated by indentation (k � 0) to cases dominated by plate bending (k > 2). The relative shear mobility is
typical for impact on composite laminates, but also covers two extreme cases where b � 0 and b > 1.

For each case the delamination threshold load and threshold velocity were found by successively increas-
ing the impactor velocity in steps of 0.5 m/s until delamination occurred.
5. Experimental comparisons

To demonstrate the ability to predict delamination onset in real laminates the theoretical predictions
were compared with published experimental results. Load measurement during small-mass high-velocity
impact is difficult to perform and published experimental results are scarce. Furthermore, the finite size
and stiffness of real impactors produce superimposed stress waves, which effectively prevent detection of
delamination onset from the load history. An example of a load history may be found in Olsson (2000).
For these reasons comparisons were limited to experimental observations of the delamination threshold
velocity. Several experimental threshold velocities are based on fairly crude extrapolation, since most exper-
iments were not focused on finding delamination thresholds.

The comparisons are shown in Table 4, which was originally presented in Olsson (2003) but has been
updated to account for the current dynamic delamination threshold load and the improved contact theory
used in the present article. The comparisons in Olsson (2003) also included a 0.5 mm laminate which has
been excluded from the present comparison, as the predicted deflection at peak load grossly exceeds the
range of validity of the current small deflection theory. The first four laminates are transversely isotropic
(‘‘quasi-isotropic’’). The properties of the remaining four orthotropic laminates were estimated using the
effective properties suggested in Eq. (25). Further details on the assumed material properties may be found
in Olsson (2003). The apparent contact modulus Q�H accounts for the corrected QH resulting from the out-
of-plane stiffness of the plate given in Eq. (3) and the finite thickness enhancement k�H=kH given by Eq. (1).
For the material AS4/PEEK two different values of GIIc have been given. The higher value is based on typ-
ical published values discussed by Olsson (2003). The lower value was deduced from accompanying large
mass (quasi-static) impact tests by Morita et al. (1997), using the quasi-static model for damage onset in
Olsson (2001).



Table 4
Predicted and observed delamination threshold velocities

Plate
material

Layup h

[mm]
Q�H

a

[GPa]
Q�f

b

[GPa]
G�rz

c

[GPa]
GIIc

[J/m2]
Impactor
material

R

[mm]
M

[g]
Vpred

[m/s]
Vexp

[m/s]
Ref.

HTA/6376C [(0/±45/90)s/
(90/�45/0)s]3

6.2 12 54 4.3 600 Aluminium 11 10.2 32 28 Olsson (2003)

AS4/PEEK (03/453/903/�453)s 3.2 12 59 4.4 1959d Aluminium 6.4 1.9 68 46 Morita et al.
(1997)

AS4/PEEK (03/453/903/�453)s 3.2 12 59 4.4 950e Aluminium 6.4 1.9 49 46 Morita et al.
(1997)

T300/5208 (0/±45/90)6s 6.2 12 57 5.0 300 Aluminium 6.4 3.0 38 38 Williams
(1984)

AS4/2220-3 (0/±45/90)6s 6.2 13 54 6.0 510 Aluminium 6.4 3.0 46 55 Williams
(1984)

AS4/3501-6 (02/902)7/02 3.8 1 55 4.8 600 Steel 1 14.6 21 17f Malvern et al.
(1989)

XAS/914C [02/±45]2s 2.0 12 48 4.6 416 Steel 3 0.9 34 30 Cantwell and
Morton (1989)

XAS/914C [0/90]8s 4.0 12 57 4.6 416 Steel 3 0.9 54 47f Cantwell (1988)
XAS/914C [0/90]2s 1.0 13 54 4.6 416 Steel 3 0.9 32 33 Cantwell (1988)

a Q�H ¼ QHk�H=kH.
b Q�f ¼ 12D�=h3.
c G�rz ¼ ðA44A55Þ1=2=h.
d Nominal toughness.
e Deduced from quasi-static impact tests in Morita et al. (1997).
f Extrapolated from 30% to 50% higher velocity.
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6. Results and discussion

An example of the finite element simulations is given in Fig. 6, which shows the response of the 4 mm
plate with Grz = 4.5 GPa at the delamination threshold velocity. Common features of all cases were an
asymmetric load history and a deflection essentially proportional to the load-time integral, i.e., the impulse.
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Fig. 6. Finite element simulation of response history for 4 mm plate with Grz = 4.5 GPa (dashed curve = no delamination, solid
curve = with delamination).
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The response without delamination is in agreement with previous experimental results and theoretical pre-
dictions, e.g., Olsson (1992).

The theoretical assumption of pure mode II delamination growth was fully confirmed by the finite ele-
ment results. The onset of delamination occurs at the peak load and causes a rapidly decreasing load,
accompanied by a quasi-unstable delamination growth until a certain size is reached (Fig. 6). Thus, the
delamination size shows a step increase at the delamination threshold velocity. Furthermore, in contrast
to the quasi-static growth during large mass impacts, the delamination growth does not occur under con-
stant load. The delamination onset causes a sudden but temporary increase in the deflection velocity (Fig.
7), while the influence on maximum plate deflection is fairly small (Fig. 6). The deflection history of the
shear compliant plate was significantly different, with a very limited effect of the delamination onset at
22 ls (Fig. 8).

The delamination threshold load obtained in the finite element simulation is in very good agreement with
the theoretical predictions (Figs. 9 and 10). This validates that the theoretical threshold load may be used as
a criterion for delamination onset during small mass/high velocity impact.
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Fig. 7. Finite element simulation of deflection velocity for 4 mm plate with Grz = 4.5 GPa.
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Fig. 8. Finite element simulation of deflection velocity for 4 mm plate with Grz=0.9 GPa.
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There is also a good agreement between the change in plate deflection velocity obtained in the finite ele-
ment simulation and the theory, Eq. (16), which predicts a doubled deflection velocity immediately after
formation of a single delamination (Fig. 11). Interestingly, the finite element simulations demonstrate that
the delamination causes a spike in the deflection velocity, which then appears to return to its original value
(Fig. 7). The only exception of this behaviour was the plate with low shear stiffness (Grz = 0.9 GPa), where
the deflection velocity history was only slightly influenced by the delamination event (Fig. 8). The small
number of time steps during the spike does not, however, allow a very accurate computation of the deflec-
tion velocity transient. A refined FE-mesh for the baseline 4 mm plate did, for example, increase the deflec-
tion velocity rate from 1.91 to 2.05. Thus, the variations in Fig. 11 are more likely to reflect a moderate
computational accuracy than an actual influence of plate thickness.

The theoretically predicted delamination threshold velocities using Eq. (22) for a fixed mass of 3 g are
also in good agreement with the finite element simulations (Figs. 12 and 13). The theoretical model under-
estimates the threshold velocity when the shear modulus is very low, which indicates that it does not fully
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Fig. 11. Predicted change in deflection velocity for plates with Grz = 4.5 GPa.
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account for shear deformations (Fig. 13). The finite thickness contact theory for the highest shear modulus
was based on an apparent asymptotic value of K0 = 2 · 10�11 m2/N in Eq. (1), as the expressions for K0

given by Suemasu et al. (1994) were undefined for Grz = 22.5 GPa. It is noted that the neglect of finite thick-
ness results in a slight overestimation of the threshold velocity. An additional overestimation of the same
order would be obtained by approximating the modulus by Qp = Ez/(1 � mrzmzr) � Ez, which increases the
indentation by 16%.

Fig. 14 gives a comparison between the theoretically predicted contact radius and the indentations pre-
dicted by theory and finite element analysis. This graph demonstrates that the error due to neglect of finite
thickness decreases with decreasing contact radius, as expected, but that the finite thickness effect remains
evident for all cases studied.

With a few exceptions there is a good agreement between predicted and experimentally observed delam-
ination threshold velocities (Table 4). The agreement for the AS4/PEEK laminate is poor when using a typ-
ical value of GIIc but good when using the low toughness deduced from the delamination onset in
accompanying quasi-static drop weight tests. It is well known that the toughness of AS4/PEEK (APC2)
could be halved by a high crystallinity after too slow cooling during manufacturing (Talbott et al.,
1987). These specimens were indeed manufactured with a slow cooling rate of 2 �C/min down to 320 �C
followed by 10 �C/min to room temperature (Adachi, T., 2005. Personal communication, Tokyo Institute
of Technology). There is no significant difference in the experimental agreement for the quasi-isotropic and
orthotropic laminates, which indicates that the effective properties in Eq. (25) can be used to estimate the
delamination threshold load of orthotropic laminates. Further theoretical work is, however, required to
validate this conclusion.

The present theory does not account for membrane effects due to large deflections. Such effects are nor-
mally less important during small mass impact, as the peak deflection generally is smaller than in large mass
impact. Furthermore, delamination onset occurs at the peak load, when the deflection is significantly smal-
ler than the expected peak deflection (after completed impact). In fact, the deflection at delamination onset
was a fraction of the plate deflection for all cases considered in the parametric study as well as in the exper-
imental comparison.
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7. Conclusions

The presented closed form solution for predicting the onset of delamination in a transversely isotropic
laminated plate under small mass/high velocity impact was validated against detailed finite element models
of plates with different thickness. This validation was predominantly based on comparing the impactor
force and the change in deflection velocities resulting from the onset of mid-plane delamination for different
shear stiffness. Very good agreement was achieved for the plate thicknesses investigated, ranging from 2 to
6 mm. This shows that the presently derived delamination threshold load should be useful as a criterion for
delamination onset in theoretical and numerical models of impact.

Theoretical predictions of the delamination threshold velocity were obtained by combining the delami-
nation threshold load with an available solution for prediction of peak load during impact. The predictions
were in good agreement with the finite element simulations. Slightly better correlation was demonstrated by
including the finite thickness effects in the contact analysis. The threshold velocity was under-predicted for
very low transverse shear stiffness, indicating that higher order shear deformation needs to be accounted for
in such instances. It may be concluded that the suggested approach can be used for closed form prediction
of delamination threshold velocities in experiments and design applications.

With a few exceptions the predicted delamination threshold velocities also showed good agreement with
published experimental results for quasi-isotropic and orthotropic laminates made of various fibre/polymer
composites.

The present study was focused on the onset of delamination growth at the most critical interface. Future
studies should consider the subsequent initiation and growth of delaminations at multiple interfaces. A fur-
ther issue of interest is delamination growth in homogeneous orthotropic plates and in laminated plates
with orthotropic plies of different orientation.
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